عنوان آخر نامه : داده کاوی و استعمال آن در تشخیص درد ها ( دیابت )
قالب بندی : PDF
بسط مختصر : امروزه در اندیشه طبابت جمع آوری داده های فراوان در مورد بیماری های مختلف از اهمیت فراوانی برخوردار است. مراکز پزشکی با مقاصد گوناگونی به سمت جمع آوری این داده ها می پردازند . تحقیق چهر این داده ها و به دست اتیان نتایج و الگوهای مفید در رابطه با بیماری ها ،یکی از اهداف استفاده از این داده ها است . حجم بابرکت این داده ها و سردرگمی بازده از آن مشکلی است که مانع رسیدن به نتایج قابل توجه می شود . بنابراین از داده کاوی برای غلبه بر این مشکل و به دست آوردن روابط سودبخش بین عوامل بیم زا در بیماری ها استفاده می شود. این مقاله به سمت معرفی داده کاوی وکاربردآن در تکنیک پزشکی (پیش بینی بیماری) با استفاده از الگوریتم های داده کاوی به همراه نرم افزارهای مرتبط با آن پرداخته است
قهرست :
فصل آغاز : مقدمه
مقدمه
بسط و بیان مسئله
هدف تحقیق
ابهت و کاربرد نتایج تحقیق
محدودیت
تشریح عملیاتی واژگان
فصل دوم : مفاهیم داده کاوی
تاریخچه
موضوع داده کاوی چیست؟
تعاریف داده کاوی
تفاوت داده کاوی و آنالیزهای آماری
کاربرد های داده کاوی
چند مثال در مناسبت مفهوم داده کاوی
مراحل داده کاوی
بار اول: Business Understanding
بار دوم: Data Understanding
جمع آوری داده ها
بحث شرح و توصیف داده ها
مرحله سوم: Data Preparation
Data selecting :انتخاب داده
مرحله چهارم: Modelling
مرحله پنجم: Evaluation
مرحله ششم: Deployment
مفاهیم اساسی در داده کاوی
Bagging
Boosting
MetaLearning
عناصر داده کاوی
تکنیک های داده کاوی
دسته اسیر
سنبله اسیر
رگرسیون گیری
تجمع وهمبستگی
درخت آهنگ گیری
الگوریتم ژنشناسی
شبکه های آتشیمزاج تصنعی
گام نهایی فرآیند داده کاوی،گزارش دادن است
فنآوری های مرتبط با داده کاوی
انبار داده
OLAP
محدودیت ها
فصل سوم : کاربرد داده کاوی در طبابت
داده کاوی باب پهنه سلامت
استراتژی های داده کاوی
نمونه هایی از کاربرد داده کاوی باب سلامت
تشبیه الگوریتم های هوشمند در شناسایی بیماری دیابت
سنخ بندی کننده Bagging
سنخ بندی کننده Naïve Bayse
سنخ اسیر کننده SVM
دسته اسیر کننده Random Forest
دسته بندی عامل C
فصل چهارم :درخت آهنگ وپیاده سازی رقیق افزار وکا
اهدااف اصلی درخت های تصمیم گیری دسته بندی عامل
گام های بایست برای طرحریزی یک درخت تصمیم گیری
دلربایی درختان آهنگ
بازنمایی درخت تصمیم
مسائل درخور از بهر یادگیری درخت تصمیم
مسائل در یادگیری درخت آهنگ
اورفیتینگ داده ها
انواع آیین های هرس کردن
عام سازی درخت
مزایای درختان آهنگ نسبت به سمت روش های دیگر داده کاوی
معایب درختان تصمیم
اشکال درختان تصمیم
درختان رگراسیون
الگوریتم ID
الگوریتم Idhat
االگوریتم id
الگوریتم idhat
الگوریتم Cart
الگوریتم C
نرم آلت های داده کاوی
رقیق آلت WEKA
قابلیت های WEKA
رقیق آلت JMP
استحقاق های JMP
پیاده سازی نرم آلت وکا
پیاده سازی توسط الگوریتم Naïve Bayse
پیاده سازی توسط الگوریتم Decision Trees
ابداع مدل رگرسیون
ایجاد مدل خوشه بندی
پیاده سازی با الگوریتم نزدیک ترین همسایه
برگه visualize
فصل پنجم:بحث ونتیجه گیری
بحث
پاداش گیری
پیشنهادات
منابع
تا به امروز نرم افزارهای تجاری و آموزشی فراوانی برای داده کاوی در حوزه های مختلف داده ها به دنیای علم و فناوری عرضه شده اند. هریک از آنها با توجه به نوع اصلی داده هایی که مورد کاوش قرار میدهند، روی الگوریتمهای خاصی متمرکز شده اند. مقایسه دقیق و علمی این ابزارها باید از جنبه های متفاوت و متعددی مانند تنوع انواع و فرمت داده های ورودی، حجم ممکن برای پردازش داده ها، الگـوریتمهای پیاده سـازی شده، روشهای ارزیابی نتایج، روشهای مصـور سـازی، روشهای پیش پردازش داده ها، واسطهای کاربر پسند، پلتفرمهای سازگار برای اجرا،قیمت و در حد بودن نرم افزار صورت گیرد. از آن میان، نرم آلت Weka با داشتن امکانات بسیار گسترده،امکان مقایسه خروجی روشهای مختلف با هم، راهنمای خوب، واسط گرافیگی کارا، سازگاری حرف سایر برنامه های ویندوزی، و از همه مهمتر وجود کتابی بسیار جامع و مرتبط با آن [Data Mining, witten et Al. 2005 ] ، معرفی میشود.
1- شناسایی نرم افزار Weka
میزکارWeka ، مجموعهای از الگوریتمهای روز یادگیری ماشینی و ابزارهای پیش پردازش دادهها میباشد. این نرمافزار به گونهای طراحی شده است که میتوان به سرعت، روشهای حاضر را به صورت انعطافپذیری روی مجموعههای جدید داده، آزمایش نمود. این نرمافزار، پشتیبانیهای ارزشمندی را برای کل فرآیند داده کاوی های تجربی فراهم میکند. این پشتیبانیها، آراسته سازی دادههای ورودی، ارزیابی آماری چارچوبهای یادگیری و نمایش گرافیکی دادههای ورودی و نتایج یادگیری را در بر میگیرند. همچنین، سازگار با دامنه وسیع الگوریتمهای یادگیری، این نرمافزار شامل ابزارهای جوراجور پیش پردازش دادههاست. این جعبه ابزار متنوع و جامع، از طریق یک واسط متداول در دسترس است، به سمت نحوی که کاربر میتواند روشهای متفاوت را در ثانیه با یکدیگر مقایسه کند و روشهایی را که برای مسایل مدنظر مناسبتر هستند، تشخیص دهد.
این سیستم به زبان جاوا نوشته شده و بر اساس لیسانس عمومی و فراگیر GNU انتشار یافته است.Weka تقریباً روی هر پلت فرمی اجرا میشود و نیز تحت سیستم عاملهای لینوکس، ویندوز، و مکینتاش، و حتی روی یک منشی دیجیتالی شخصی، آزمایش شده است.
این نرم افزار، یک واسط همگون برای بسیاری از الگوریتمهای یادگیری متفاوت، فراهم کرده است که از طریق آن روشهای پیش پردازش، پشت از پردازش و ارزیابی نتایج طرح های یادگیری روی همه مجموعه های داده موجود، قابل اعمال است.
رقیق آلت Weka ، پیاده سازی الگوریتمهای مختلف یادگیری را فراهم میکند و به آسانی میتوان آنها را به مجموعه های داده خود اعمال کرد.
همچنین، این رقیق افزار حاوی مجموعه متنوعی از ابزارهای تبدیل مجموعههای داده ها، همانند الگوریتمهای گسسته سازی میباشد. در این محیط میتوان یک مجموعه داده را پیش پردازش کرد، آن را به یک طرح یادگیری وارد نمود، و دستهبندی حاصله و کارآییاش را مورد تحلیل قرار داد.( تمام این کارها، بدون نیاز به سمت نوشتن هیچ قطعه برنامهای میسر است.)
این محیط، شامل روشهایی برای همه مسایل مدل داده کاوی مانند رگرسیون، ردهبندی، خوشهبندی، کاوش قواعد انجمنی و تعیین ویژگی میباشد. حرف در نظر گرفتن اینکه، دادهها بخش مکمل کار هستند، بسیاری از ابزارهای پیش پردازش دادهها و مصورسازی آنها آماده گشته است. همه الگوریتم ها، ورودیهای خود را به سمت صورت یک جدول رابطهای به سمت فرمت ARFF دریافت میکنند. این فرمت دادهها، میتواند از یک فایل صفت شده یا به وسیله یک درخواست از پایگاه دادهای تولید گردد.
یکی از راههای به کارگیری Weka ، اجرا یک آیین یادگیری به یک مجموعه داده و تحلیل خروجی آن برای شناخت چیزهای بیشتری راجع به آن اطلاعات میباشد. راه دیگر استفاده از الگو یادگیری شده برای تولید پیشبینیهایی در مورد نمونههای جدید است. سومین راه، اعمال یادگیرندههای مختلف و مقایسه کارآیی آنها به غرض انتخاب یکی از آنها برای تخمین میباشد. روشهای یادگیری Classifier نامیده میشوند و باب واسط تعاملی Weka ، میتوان هر یک از آنها را از منو انتخاب نمود. بسیاری از classifier ها پارامترهای قابل تنظیم دارند که میتوان از طریق صفحه ویژگیها یا object editor به سمت آنها دسترسی داشت. یک تنها ارزیابی مشترک، برای اندازهگیری کارآیی همه classifier به کار میرود.
پیاده سازیهای چارچوبهای یادگیری واقعی، منابع بسیار ارزشمندی هستند که Weka فراهم می کند. ابزارهایی که برای پیش پردازش دادهها استعمال میشوند Filter نامیده میشوند. همانند classifier ها، میتوان filter ها را از منوی مربوطه انتخاب کرده و آنها را حرف نیازمندیهای خود، سازگار نمود. در ادامه، به سمت آیین به کارگیری فیلترها اشاره میشود.
علاوه بر موردها فوق، Weka شامل پیاده سازی الگوریتمهایی برای یادگیری قواعد انجمنی، خوشهبندی دادهها در جایی که هیچ دستهای تعریف نشده است، و انتخاب ویژگیهای مرتبط باب دادهها میباشد.
تعداد صفحات :80
فرمت فایل : Word